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Supplementary notes

All figures have been created using the open access general-purpose programming language
Python version 3.

Snow concentrations were calculated using daily fields of sea-ice area fraction and total
snowfall from European Centre for Medium Range Weather Forecast (ECMWF), which are all
open access (see Data availability). All continental regions and marine/oceanic regions
described in the manuscript are also provided (Supplementary Figure 6, Data availability).
Mountain regions were defined using operational snow depth data from ECMWF (see Data
availability), only where snow depth was positive throughout the year.



Supplementary Table 1. Mass fractions of PM2.5 and PM10 size modes of TWPs and BWPs
with respect to total TWPs and BWPs assumed in the emissions ingested in FLEXPART model.
Five scenarios were created assuming that 2.5%, 5%, 10%, 20% and 40% of the total TWP
were emitted as PM10 and 0.25%, 0.5%, 1%, 2% and 4% as PM2.5. Accordingly, 60%, 70%,
80%, 90% and 100% of the total BWPs were assumed PM10 and 30%, 40%, 50%, 60% and
70% were assumed PM2.5, based on the range of values reported in the literature. These values
were used in the ensemble of 120 members (Methods) together with assumptions on particle
size distribution (eight for each of the PM2.5 and PM10 fractions, Supplementary Figure 4) and
CCN/IN efficiency (three different sets of scavenging coefficients per fraction, Supplementary
Table 2).

TWPs PM2.5 PM10 BWPs PM2.5 PMI10
Scenario I 0.25% 2.5% Scenariol 30%  60%
Scenario 2 0.5% 5% Scenario2 40%  70%
Scenario3 1% 10% Scenario3 50%  80%
Scenario4 2% 20% Scenario4 60% 90%
Scenario 5 4% 40% Scenario5 70% 100%

*Note that PM2.5 is always part of PM 10, and PM10 must by definition always be more than
PM2.5.




Supplementary Table 2. Different scavenging parameters of below—cloud and in—cloud
scavenging used in FLEXPART version 10.4 for the ensemble model simulations of
microplastics. A and B are rain and snow collection efficiencies for below-cloud scavenging,
A; is the cloud condensation nuclei (CCN) efficiency and B; the ice nuclei (IN) efficiency that
are used in in-cloud scavenging following Grythe et al.!. These values were used in the
ensemble of 120 members (Methods) together with different assumption for the airborne
fraction (five for each of the PM2.5 and PM10 fractions, Supplementary Table 1) and particle
size distribution (eight for each of the PM2.5 and PM10 fractions, Supplementary Figure 4).

A B A; B;
Low efficiency I 1 0.001 0.01

Medium efficiency 1 1 0.05 0.15
High efficiency 1 1 05 0.8




ANNUAL EMISSIONS OF TIRE WEAR PARTICLES (TWP)
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Supplementary Figure 1. Annual emissions of TWPs with the CO2 ratio method (panels a and
b) and using the GAINS model (panels ¢ and d) for PM2.5 and PM10 particles, respectively
(Fig. 1 and Methods). Emissions were calculated as the geometric mean of the five scenarios
for the airborne fraction of total TWPs, assuming 2.5%, 5%, 10%, 20% and 40% of the total
TWP are emitted as PM10 and 0.25%, 0.5%, 1%, 2% and 4% as PM2.5 following a log-normal
distribution (Supplementary Table 1). Difference in emissions using the two different
methodologies are presented in panels e and f. Uncertainties for the PM2.5 and PM10 TWP
emissions (panels g and h) were calculated as the geometric standard deviation of the five
assumed different airborne fractions per size mode (PM2.5 and PM10) with respect to total
TWP emissions (Methods). Bold numbers at the lower left side of panels a—d represent total
annual emissions of TWPs, whereas bold numbers at the lower left side of panels e and f are
the respective annual differences in the emissions of TWPs from the two methodologies used.
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Supplementary Figure 2. Annual emissions of BWPs from the GAINS model (panels a and
b) for PM2.5 and PM10, respectively. The emissions are the geometric mean of five different
assumptions on the airborne fraction for each size bin (30%, 40%, 50%, 60% and 70% of total
BWPs were assumed to be PM2.5 and 60%, 70%, 80%, 90% and 100% of the total BWPs to
be PMI10) following a log-normal distribution (Supplementary Table 1). The estimated
associated uncertainty (panels ¢ and d) is expressed with the geometric standard deviation of
the aforementioned scenarios (Methods). Bold numbers at the lower left side of panels a and b
represent total annual emissions of BWPs.



SNOW CONCENTRATIONS OF ROAD MICROPLASTICS
IN JANUARY

(a) PM2.5 TWP (b) PM10 TWP
(CO, method) (CO, method)

128

(c) PM2.5 TWP
(IIASA)

(d) PM10 TWP
(IIASA)

Snow concentration (ng kg™!)

(e) PM2.5 BWP
(IIASA) 1 (IIASA)

(f) PM10 BWP

Supplementary Figure 3. Monthly (12) snow concentrations of road microplastic particles in
the Arctic snow. Total snowfall and snow depth were adopted from European Centre for
Medium Range Weather Forecast (ECMWF). The concentrations were calculated using daily
modelled deposition of road microplastics and daily fields of total snowfall (in m of water
equivalent) from ECMWF operational fields and only over land (using a land-sea mask) and/or
sea-ice (using sea-ice area fraction from ECMWF). The annual average snow concentrations
were calculated only for months where snowfall was more than 90% of total precipitation
(Methods).



SNOW CONCENTRATIONS OF ROAD MICROPLASTICS
IN FEBRUARY
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Supplementary Figure 3. Continued.



SNOW CONCENTRATIONS OF ROAD MICROPLASTICS
IN MARCH
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Supplementary Figure 3. Continued.



SNOW CONCENTRATIONS OF ROAD MICROPLASTICS
IN APRIL
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Supplementary Figure 3. Continued.



SNOW CONCENTRATIONS OF ROAD MICROPLASTICS
IN MAY
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Supplementary Figure 3. Continued.



SNOW CONCENTRATIONS OF ROAD MICROPLASTICS
IN JUNE
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Supplementary Figure 3. Continued.



SNOW CONCENTRATIONS OF ROAD MICROPLASTICS
IN JULY
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Supplementary Figure 3. Continued.



SNOW CONCENTRATIONS OF ROAD MICROPLASTICS
IN AUGUST
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Supplementary Figure 3. Continued.



SNOW CONCENTRATIONS OF ROAD MICROPLASTICS
IN SEPTEMBER
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Supplementary Figure 3. Continued.



SNOW CONCENTRATIONS OF ROAD MICROPLASTICS
IN OCTOBER
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Supplementary Figure 3. Continued.



SNOW CONCENTRATIONS OF ROAD MICROPLASTICS
IN NOVEMBER
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Supplementary Figure 3. Continued.



SNOW CONCENTRATIONS OF ROAD MICROPLASTICS
IN DECEMBER
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Supplementary Figure 3. Continued.



SIZE DISTRIBUTION USED IN THE MODEL ENSEMBLE
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Supplementary Figure 4. Size distribution used in the simulations of road microplastics
(TWPs and BWPs) presenting a set of different a posteriori weightings (mass fractions) for
different size classes (eight for each of the TWP and BWP simulations). Three size classes were
used for PM2.5 (0.5, 1.0 and 2.1 um) and five for the PM10 mode (0.5, 2.1, 3.2, 6.0 and 9.5
um). Note the bimodal (two peaks)> size distribution of TWPs with one maximum close to
the fine mode and another in the coarse mode and the unimodal (single peak)® ! distribution of
BWPs with maximum in the fine or coarse mode.



PROBABILITY DENSITY FUNCTIONS OF TWP AND BWP DEPOSITION
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Supplementary Figure 5. Probability density functions (PDF) of deposition of TWPs and
BWPs for both PM2.5 and PM10 sizes. Note that PDF is based on a model ensemble of 120

members that includes five (5) members with different assumptions on the airborne fraction in

the emissions (Supplementary Table 1), eight (8) members assuming different particle size

distribution in the atmospheric dispersion (Supplementary Figure 4) and three (3) members
with different scavenging coefficients expressing the CCN/IN efficiency (Supplementary Table

2).



(a) Definition of continents and regions (b) Definition of oceanic regions
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Supplementary Figure 6. (a) Masked continents used in the present study for South America
(SA), Central America (CA), North America (NA), Africa (AF), Europe (EU), Asia (AS),
Oceania (OC), Russia (RUS), Antarctica (ANT) and Greenland (GRL). (b) Masks of oceanic
regions used in the present study. Values between 1 and 56 include Atlantic Ocean, Pacific
Ocean, Indian Ocean, Mediterranean Sea, Baltic Sea, Black Sea, Red Sea, Persian Gulf, Hudson
Bay, Southern Ocean, Arctic Ocean, Sea of Japan, Kara Sea, Sulu Sea, Baffin Bay, East
Mediterranean, West Mediterranean, Sea of Okhotsk, Banda Sea, Caribbean Sea, Andaman
Basin, North Caribbean, Gulf of Mexico, Beaufort Sea, South China Sea, Barents Sea, Celebes
Sea, Aleutian Basin, Fiji Basin, North American Basin, West European Basin, Southeast Indian
Basin, Coral Sea, East Indian Basin, Central Indian Basin, Southwest Atlantic Basin, Southeast
Atlantic Basin, Southeast Pacific Basin, Guatemala Basin, East Caroline Basin, Marianas
Basin, Philippine Sea, Arabian Sea, Chile Basin, Somali Basin, Mascarene Basin, Crozet Basin,
Guinea Basin, Brazil Basin, Argentine Basin, Tasman Sea, Atlantic Indian Basin, Caspian Sea,
Sulu Sea II, Venezuela Basin, Bay of Bengal, Java Sea, East Indian Atlantic Basin. Note that
most of the smaller regions have been overwritten and are not visible.
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